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In multiple myeloma spatial differences in the subclonal architecture, mole-
cular signatures and composition of the microenvironment remain poorly
characterized. To address this shortcoming, we perform multi-region
sequencing on paired random bone marrow and focal lesion samples from 17
newly diagnosed patients. Using single-cell RNA- and ATAC-seq we find a
median of 6 tumor subclones per patient and unique subclones in focal
lesions. Genetically identical subclones display different levels of spatial
transcriptional plasticity, including nearly identical profiles and pronounced
heterogeneity at different sites, which can include differential expression of
immunotherapy targets, such as CD20 and CD38. Macrophages are sig-
nificantly depleted in the microenvironment of focal lesions. We observe
proportional changes in the T-cell repertoire but no site-specific expansion of
T-cell clones in intramedullary lesions. In conclusion, our results demonstrate
the relevance of considering spatial heterogeneity in multiple myeloma with
potential implications for models of cell-cell interactions and disease
progression.

Intra-tumor heterogeneity is a hallmark of the plasma cell malignancy
multiplemyeloma (MM)1,2. In order to decipher this heterogeneity, the
genomic landscape of MM has been extensively studied using bulk
sequencing techniques, including whole exome and whole genome
sequencing (WGS)3–6. Recently, high throughput single-cell (sc) RNA
sequencing (scRNA-seq) was successfully applied to describe the intra-

tumor heterogeneity in newly diagnosed and relapsed-refractory MM
patients, the changes in the tumor microenvironment (TME) asso-
ciated with disease progression and the subclonal evolution during
treatment7–10. These studies have significantly contributed to our
understanding ofMMbiology by dissecting intra-tumor heterogeneity
and TME interactions within a randomly selected site at the iliac crest.
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However, intra-tumor heterogeneity in MM also arises from focal
lesions, which are nodular accumulations of malignant plasma cells
scattered throughout the bone marrow (BM). The number and size of
focal lesions are associated with poor prognosis11,12. Furthermore, a
recent multi-region sequencing study demonstrated distinct driver
mutations in them5. Thus, the critical step toward disease progression
couldbe the tumor evolution in spatially restricted areas in the skeletal
system that would not necessarily be apparent from the analysis of a
single biopsy from the iliac crest.

In this work we examine this hypothesis by conducting a pro-
spective imaging-guided sampling of BM from focal lesions. By sub-
jecting this unique biorepository to a comprehensive bulk- and
sc-sequencing analysis we prove the concept of MM as a spatially
heterogeneous disease, show gene signatures associated with focal
lesions and demonstrate spatial heterogeneity in the TME at the single-
cell level.

Results
Spatial tumor heterogeneity is a frequent event in newly diag-
nosed myeloma patients
We started the analysis by determining the extent of spatial hetero-
geneity in our cohort of newly diagnosed MM patients using WGS
(Fig. 1a, b). Our sample set comprised bone marrow from a random
iliac crest site (RBM) and paired focal lesion specimens, including 11
intra- and five paramedullary (=soft-tissue component arising from
bone) lesions. In most patients (n = 12/16) we found major differences
in chromosomal and/ormutational profiles, definedby the presenceof
unshared or enriched events (Fig. 1c, Supplementary Data 1). In all
patients with major differences, the dominant subclone at the focal
lesion site was not detectable or just a minor subclone in the RBM
(Fig. 1d, Supplementary Fig. 1). Compared to intramedullary lesions,
there was a trend to a higher proportion of heterogeneous
(=unshared + enriched) mutations in patients with paramedullary dis-
ease (mean 33.4% (range: 9.65–58.83%) vs. 14.6% (1.02–41.08%),
p =0.07, two-sided Wilcoxon rank sum test. Supplementary Fig. 2a).
The proportion of heterogeneous mutations was not associated with
the high-risk aberration gain(1q) neither in our data nor in a recently
published multi-region sequencing study5 (p > 0.05, Supplementary
Fig. 2b, c).

Site-unique or strongly enriched non-synonymous single nucleo-
tide variants (SNVs) affectingMMdriver genes, such asKRAS,NRAS and
TP53, were seen in 6 patients (Fig. 1d, e, Supplementary Fig. 1, Sup-
plementary Table 1). For three of these patients scRNA-seq was avail-
able with RAS-mutations being accessible. Importantly, due to the
sparse nature of scRNA-seq measurements, MM cells with a wildtype
call presumably contained undetected RAS-mutations. Patient P02
presented with two KRAS and one NRAS mutation and according to
WGS, KRASG38A (p.G13D) was unique to the focal lesion (Fig. 1e). Using
scRNA-seq, we observed themutation in 651/1442 focal lesion cells and
in only 3/814 RBM cells with detectable KRAS expression, suggesting
that it was present at both BM sites but indeed strongly enriched in the
focal lesion (Fig. 1e). The other two RAS mutations in this patient,
KRASG35A (p.G12D) and NRASG38A (p.G13D), were enriched in the RBM
(Fig. 1e, Supplementary Fig. 2d–f). In patients P01 and P04, enrichment
of KRASG35T (p.G12V) and KRASA183C (p.Q61G) at one BM site could be
seen, respectively, further supporting WGS data (Supplementary
Fig. 2g–j).

Taken together, we frequently observed spatial tumor hetero-
geneity inMMpatients with focal lesions, including site-enriched SNVs
affecting known myeloma driver genes.

Site-unique subclones are present in focal lesions
Having shown the presence of unique or strongly enriched mutations
in focal lesions, we next sought to define the spatial subclonal archi-
tecture in more detail using sc-sequencing. ScRNA-seq data was

available for 5 focal lesion/RBM pairs, and sc Assay for Transposase-
Accessible Chromatin using sequencing (scATAC-seq) data could be
generated for 4 of them (Fig. 1b, Supplementary Fig. 3). We defined
subclones based on the presence of subclonal copy number aberra-
tions (CNAs). For scRNA-seq, CNAs were inferred using InferCNV13,
while for scATAC-seqwe applied an approachpublished by Lareau and
co-workers14. To improve the accuracy of CNA-calls, we used WGS to
supervise the analysis (please see methods for more details). Patient
P05 with two prominent and two rare subclones in scRNA-seq and
scATAC-seq is shown as an example in Fig. 2a. Usually there was high
concordance between the two sc-sequencing methods (Supplemen-
tary Fig. 4). Yet, in P04 scRNA-seq indicated a subclonewith deletion of
chromosome 14 but no deletion of chromosome 13 (subclone 6B in
Supplementary Fig. 4d), which could not be confirmed usingWGS and
scATAC-seq. This highlights the value of bulk WGS as a confirmatory
method if CNA-calls from sc-techniques are used for detection of
subclones. Considering only subclones with CNAs, which were con-
firmedbyWGSor the second single-cellmethod, we found amedian of
6 subclones per patient (range: 4–8) (Fig. 2b, c). This number is higher
compared to a recent scRNA-seq study, where up to 3 transcriptional
subclones were seen9 but comparable to another sc study based on
SNVs, which observed up to 6 subclones15. Comparing paired samples
we detected site-unique CNA-subclones in three patients (Fig. 2b).
While in patient P01 each BM site presented with a dominant unique
subclone, up to two unique subclones per site were seen in P02 and
P04 (Fig. 2c).

In summary, using a supervised CNA-analysis we observed a
median of 6 subclones per patient, including site-unique subclones,
illustrating that clonal heterogeneity could be underestimated when
including only a single BM specimen.

Expression signatures associated with focal lesions
We next addressed the question if the solid-tumor-like growth pattern,
which characterizes focal lesions, is associated with a unique gene
expression profile. We used bulk RNA-seq to compare paired CD138-
enriched samples (n = 11 pairs) and applying the Wald test in DESeq216,
we found 47 transcripts, which were differentially expressed after
Benjamini-Hochberg correction for multiple testing (Fig. 3a, Supple-
mentary Data 2). To validate this finding, we analyzedmicroarray gene-
expression profiling (GEP) data of paired focal lesion/RBM samples
from the University of Arkansas for Medical Sciences (UAMS) (n = 250
pairs)5. Using Wilcoxon signed rank tests for paired samples, we con-
firmed differential expression for 6 of the transcripts, including up-
regulation of MYLIP and ADM as well as down-regulation of the two
chemokines CXCL7 (PPBP) and CXCL12 in focal lesions (Fig. 3a, b, Sup-
plementary Data 2). Of note, 28/47 transcripts, including several non-
coding genes, could not be assessed usingGEP, which could explain the
rather low number of confirmed differences. Differential expression of
MYLIP, ADM, CXCL7, and CXCL12 was seen in both intra- and para-
medullary lesions, but the downregulation of CXCL12 was slightly more
pronounced in paramedullary disease (mean log2-fold change para-
medullary: 4.16 (range = 1.01–7.56); intramedullary: 1.63
(range =0.76–2.89), p =0.32 in two-sided Wilcoxon rank sum test,
Supplementary Fig. 5a). There were no CNAs that could explain the
consistent differential expression of the four genes (Supplementary
Data 1), and the same holds true for the proportion of Ki67-positiveMM
cells in core biopsies, which was not significantly different between
paired focal lesion and RBM (n =8 pairs, focal lesion median: 5.7%
(range: 0.2–48.6%) vs. RBM median: 9.2% (2.7–16.7%), p =0.84 in two-
sided Wilcoxon signed rank test, Fig. 3c). In order to understand the
clinical implications of these differentially expressed genes, we corre-
lated their expression with patient characteristics and outcome in a
cohort of 653 newly diagnosedMMpatients. Low expression (≤median)
of CXCL7 (hazard ratio (HR): 1.39, 95% confidence interval: 1.26–1.52,
p =0.01, Cox regression and log-rank test) and CXCL12 (HR: 1.71
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Fig. 1 | Sample origin, appliedmethods and the extent of spatial heterogeneity.
a Random bone marrow (RBM) aspirates from the iliac crest and imaging-guided
samples from focal lesions (FL) were processed using CD138-positive selection.
b CD138-positive tumor and CD138-negative tumor microenvironment (TME)
samples from intra- or paramedullary components were analyzed using bulk and
single-cell sequencing.Gray squares: samples not available. For P06, only TME data
was available. c Number of copy number aberrations (CNA, >200kb) and muta-
tional differences between paired RBM and FL samples. Left panel: Red and pink
denote major and minor unshared CNAs, respectively. Blue denotes CNAs that
dominated in one sample (cancer clonal fraction (CCF) > 0.6) but were only a
minor subclone in the paired sample. Right panel: Number of major (red), and
minor (pink) unshared single-nucleotide variants (SNVs). Major SNVs with a

threefold enrichment between the paired samples were classified as enriched
(blue). d Whole genome sequencing CCF plot for total SNVs in paired RBM/FL
specimens from patient P08 as an example for a patient with two site-unique,
biallelic TP53-mutations. The color code corresponds to the one in (c). e Imaging,
whole genome and single-cell RNA-seq data for patient P02. Left panel: CT- and
PET-CT-scans showing the location of the sampled FL (red circle) and RBM (blue
circle). Middle panel: CCF-plot for SNVs in paired specimens. The three unique RAS
mutations are depicted in red (KRAS p.G13D), blue (NRAS p.G13D) and black (KRAS
p.G12D), respectively. Uniform Manifold Approximation and Projection (UMAP)
and single-cell calls for these three SNVs are shown in the right panel. Dark gray
dots denote cells with a wild type (WT) call, light gray dots indicate cells with no
call. Source data are provided as a Source Data file.
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(1.58–1.84), p<0.001, Cox regression and log-rank test) was associated
with inferior overall survival (Supplementary Fig. 5b, c). No significant
effect was seen for ADM and MYLIP (Supplementary Fig. 5d, e). For
CXCL7 and CXCL12, low expression was associated with increased

plasma cell (PC) infiltration levels and advanced disease according to
the revised International Staging System (rISS) (p <0.05, t-test and chi-
square test, respectively, Supplementary Data 3). Furthermore, low
expression of CXCL12 was associated with cytogenetic risk markers,
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(please also see Supplementary Fig. 4d). Source data are provided as a Source
Data file.
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including translocation t(4;14), deletion 17p and gain of 1q21
(all p<0.05, chi-square test, Supplementary Data 3).

Since CXCL12 is a key chemokine in the pathogenesis of
myeloma17,18 we used ELISA and IHC to validate expression differences
at the protein level. Of note, we did not find a consistent down-
regulation of CXCL12 in sortedMMcells from focal lesions using ELISA
(n = 6 patients, mean ratio RBM/FL: 1.26, (range: 0.91–1.75), p = 0.46 in
linear mixed-effects model, Supplementary Fig. 5g). This was in line
with findings from stained histology sections which did not show
consistent differences in the proportion of CXCL12-positive MM cells
(focal lesionmedian: 5 (0.04–20.6) vs. RBMmedian: 1.35 (0.044–20.1),
p =0.64 in two-sidedWilcoxon signed rank test, Fig. 3d). Due to limited
patient material and low expression in MM cells, we could not assess
protein levels of CXCL7.

One possible explanation for the difference betweenmRNA and
protein levels of CXCL12 could be internalization of the protein via

the receptors CXCR4 and CXCR7. For CXCR4, we found up to two-
fold differences between paired samples from 11 patients using bulk
RNA-seq but the changes were seen in both directions (7x down-and
4x upregulated in focal lesions, p = 0.67 in two-sided Wilcoxon
signed rank test, Supplementary Fig. 5h). Similarly, there was no
significant difference in the proportion of CXCR4-positive MM cells
in IHC (focal lesion median: 41.04% (range: 2.4–91.6%) vs. RBM
median: 65.1% (3.3–95.3%), p = 0.20 in two-sided Wilcoxon signed
rank test, Supplementary Fig. 5i). While our findings for CXCR4 do
not support increased internalization via this receptor, the CXCL12
scavenger-receptor CXCR7 showed a fivefold upregulation at the
mRNA level in the paramedullary lesion of patient P13. This para-
medullary lesion presented with a 215-fold down-regulation
of the CXCL12 gene compared to the RBM but showed similar
values at the protein level according to IHC and ELISA (Fig. 3d and
Supplementary Fig. 5g).
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Fig. 3 | Differentially expressed genes between paired samples. a Volcano plot
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RNA-seq from 11 patients using the two-sided Wald test. The 47 genes, which
showed a ≥1.5-fold difference between focal lesion and RBM, and which were sig-
nificant (p <0.05) in Wald-test after Benjamini-Hochberg correction for multiple
testing, are depicted in red. The 6 genes, forwhichdifferential expression (p <0.05)
could be confirmed using microarray data for 250 focal lesion/RBM pairs from the
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log2-normalized bulk RNA-seq expression values of the differentially expressed
genes ADM, CXCL7 (PPBP), CXCL12 andMYLIP are shown. c Ki-67 index of myeloma
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right panel a line plot is shown for the proportion of Ki67-positive plasma cells in
paired samples from 8 patients. d Proportion of CXCL12-positive myeloma cells. In
the left panel paired tissue slides from patient P13, which were stained for CXCL12,
are depicted as examples. SinceMUM1/CXCL12 double stainings were not feasible,
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signed-rank-test. Due to limited patient material, there are no independent repli-
cates for immunhistochemistry. Source data are provided as a Source Data file.
Images are representative for all 8 patients.
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An alternative explanation for the difference inmRNA and protein
levels could be increased supply of MM cells with CXCL12. Mesench-
ymal stromal cells (MSCs) have been described as an important source
of CXCL12 for myeloma cells19. Using flow cytometry, we observed a
significantly increased proportion of MSCs (CD271+, CD90+) in
the TME of focal lesions in 8 patients with paired samples (mean
RBM=0.08% (range:0.004–0.23%) vs mean focal lesion = 2.50%
(0.06–9.12%), p =0.04 in two-sided Wilcoxon signed rank test, Sup-
plementary Fig. 5j), indicating that a major source of CXCL12 is enri-
ched in the TME of focal lesions.

Taken together, bulk RNA-seq and GEP data reveal consistent
changes in expression profiles of focal lesions compared to paired
random samples, including down-regulation of chemoattractant
cytokines. Yet, the down-regulation of CXCL12 could not be validated
at the protein level, probably due to an enrichment of CXCL12-
producing cells in the TME of focal lesions and internalization of this
cytokine by MM cells.

Tumor subclones show different levels of spatial transcriptional
plasticity
The next question we addressed was if spatial differences as seen in
bulk RNA-seq aredue to the presence of unique subclones or the result
of transcriptional or epigenetic plasticity. Therefore, we defined the
transcriptional and chromatin accessibility profiles of genetically
identical subclones at different BM sites. To avoid confounding due to
small cell numbers we only considered CNA-defined subclones with
>50 cells at both BM sites. All 6 genes, which we identified as differ-
entially expressed between focal lesion/RBM pairs using bulk RNA-seq
and GEP, were barely or not detectable using scRNA-seq (Supple-
mentary Fig. 6a). In paired scATAC-seq of four patients, there was low
coverage at the CEBPD, CXCL7, and CXCL12 gene loci, while the other
three genes showed no differential accessibility in regulatory regions
between focal lesions and RBM (Supplementary Fig. 6b).

Performing a global gene expression and chromatin accessibility
analysis of genetically identical subclones at different BM sites, we
observed two patterns, including very similar profiles and pronounced
spatial heterogeneity in expression and accessibility profiles. Very
similar profiles of genetically identical subclones at different BM sites
were seen in patients P01 & P05, with subclones being assigned to the
same transcriptional cluster (Fig. 4a, Supplementary Fig. 7a). For one
of the patients (P05) paired scATAC-seq data was available and in line
with scRNA-seq genetically identical subclones fromdifferent BM sites
were assigned to the same chromatin accessibility cluster (Supple-
mentary Fig. 7b).

In contrast, pronounced spatial heterogeneity in epigenetic and
transcriptional profiles of identical subclones at different BM sites was
seen in patients P03 and P04 (Fig. 4b, Supplementary Fig. 7c). Espe-
cially subclones 1 and 6 in patient P03 displayed strong differences
between the FL and RBM and they were assigned to different tran-
scriptional and chromatin accessibility clusters, suggesting changes
induced by the TME (Fig. 4b, Supplementary Fig. 7d). Differences in
gene expression included an upregulation of MYC-target genes at the
RBM-site as well as an upregulation of IFNγ and IFNα-pathway genes in
the focal lesion, with the same spatial changes being seen in both
subclones (Supplementary Data 4). The predicted motif activity of
transcription factors, which regulate interferon, such as IRF4, 8 and 9
was increased at the focal lesion site, suggesting epigenetic changes to
underlie upregulation of the interferon pathway (Fig. 4c).

Furthermore, we found the immunotherapy target CD38 and
genes coding for MHC I and II components (CD74, HLA-B, HLA-C)
among the top differentially expressed genes between genetically
identical subclones at different BM sites of patient P03 (Fig. 4b). To
further delineate the mechanism underlying increased CD38 expres-
sion at the focal lesion site, we assessed chromatin accessibility at the
regulatory elements of CD38. We observed a strong correlation

between the CD38 promoter and a distal putative enhancer as well as a
regulatory intronic element only in the focal lesion (Fig. 4d). In addi-
tion, theCD38promoter peakoverlappedwith IRF4peaks inpublished
chromatin immunoprecipitation with sequencing (ChIP-seq) data for
the MM cell line KMS12BM20 (Fig. 4d), suggesting a link between
increased IRF4 activity and overexpression of CD38.

Interestingly transcriptional plasticity of immunotherapy targets
and MHC-components was not only seen between different bone
marrow sites, but also between coexisting/competing subclones at the
same BM site. For instance, in patient P01 MM cells with a del(16q11.2-
q24.3) showed a higher expression of CD74 as well as decreased
expression of HLA-B, and HLA-E compared to MM cells without this
deletion. Furthermore, the site-unique dominant subclone at the focal
lesion overexpressed MS4A1, which encodes the immunotherapy tar-
get CD20 (Fig. 5a). In patient P03 subclone 5 showed the highest
expression of both CD38 and TNFRSF17 (also known as BCMA) (Fig. 5b).

Since differential expression of the MHC II component CD74 was
seen in multiple comparisons, we next examined the correlation
between its expression and clinical parameters. In 653 newly diag-
nosed patients, low (≤median) expression of CD74was associated with
inferior OS (HR: 1.39 (1.25–1.52), p =0.01, Cox regression and log-rank
test), as well as increased PC infiltration (p =0.03, t test) and higher
rISS stages (p =0.047, chi-square test, Supplementary Fig. 5f, Supple-
mentary Data 3).

Overall, we observed different levels of spatial transcriptional and
epigenetic plasticity, suggesting that both the presence of unique
subclones aswell as plasticity can contribute to expression differences
between BM sites. Our results also indicate that genes coding for MHC
components and immunotherapy targets can be differentially
expressed both at the subclonal level and at different BM sites.

Macrophages are depleted in focal lesions
Intratumor heterogeneity was recently associated with diversity of the
TME in melanoma21. To gain a first insight into the composition of the
cellular TME in focal lesions, we performed scRNA-seq of paired
CD138-depleted mononuclear cell fractions with the focal lesion sam-
ple originating from intramedullary components. In total, 31,216 cells
from 6 patients passed quality control. We integrated them into a
single dataset and used an annotation, which was developed by Stuart
and co-workers22. Splitting the data by sample type, we found a sig-
nificant depletion of CD14- and CD16-positive monocytes/macro-
phages and their progenitors in the TME of focal lesions compared to
the RBM (>2.5-fold, p <0.05 in two-sided Wilcoxon signed rank test,
Fig. 6a, b, Supplementary Data 5). For the T-cell compartment we
observed a significant enrichment of CD8 Effector 2 T-cells in focal
lesions (mean focal lesion=11.13% (1.7–29.6%) vs. mean RBM=4.9%
(1.6–10.4%), p =0.03 in two-sidedWilcoxon signed rank test), however
a more than twofold enrichment was only found in 3 patients (Sup-
plementary Data 5).

The relative depletion of macrophages in the TME of focal
lesions is a surprising finding, given their role as one of the key
interaction partners of MM cells in the BM niche and the association
between high numbers of macrophages in the TME and increased
MM cell proliferation18,23–25. To validate our finding, we stained core
biopsies from 21 patients (6 patients with scRNA-seq), and deter-
mined the proportion of macrophages, CD4- and CD8-positive T-
cells (Fig. 6c, d). Unexpectedly, we observed a high intra-sample
heterogeneity in proportions of macrophages, with both focal
lesion and RBM specimens showing regional differences. To
account for that, we quantified macrophages and T-cells at multiple
sites within the biopsies and defined the MM infiltration at these
sites in four intervals (1–25%, 26–50%, 51–75%, and 76–100%). We fit
linear mixed-effects models for cell proportions and included the
type of BM sample (RBM vs. focal lesion) and tumor load at inves-
tigated sites as fixed effects and patient ID as random effect. Details
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correlation coefficient.
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of the models are shown in Supplementary Table 2. There were
significantly more macrophages in RBM specimens compared to
focal lesions (+8%, standard error (SE) 1.20, p < 0.0001). We also
found a significant, albeit smaller difference for CD8-positive T-cells
(+3.86% in RBM, SE 1.14, p = 0.0006). For CD4-positive T-cells there
was no significant difference between RBM and focal lesions
(p > 0.05). Of note, there was a strong decline in macrophages from
regions with a lowMMcell infiltration (<25%, interval 1) compared to
sites with a high infiltration (>75%, interval 4) (Fig. 6d). The
respective estimated proportions were 41.04% (SE: 2.25) in interval 1
and a drop of −40.25% (standard error (SE) 1.93) in interval 4. The
decline was less pronounced for CD4-positive (22.99% (SE: 2.02) in
interval 1 & −21.49% (SE: 1.95) in interval 4) and CD8-positive T-cells
(17.88% (SE: 2.23) in interval 1 & −14.98% (SE: 2.02) in interval 4).
Importantly, this finding could also explain the relative depletion of
macrophages in focal lesions, since they had a significantly higher
plasma cell infiltration compared to the paired RBM (mean focal
lesions=62.0%, (range:10.1–96.8%) vs. mean RBM = 32.2% (0.8-
74.7%), p = 0.001 in two-sided Wilcoxon signed rank test, Fig. 6e),
and we cannot exclude that this also holds true for sites with the
highest infiltration (interval 4).

To further validate changes in the TME, we performed flow
cytometry, including paired samples from 8 patients. There was a
trend towards a lower proportion of monocytes/macrophages in the
TME of focal lesions (mean focal lesion=8.01% (range: 2.35–20%) vs.
mean RBM= 11.36% (6.58–25.33%), p =0.078 in two-sided Wilcoxon
signed rank test, Supplementary Fig. 8a). Supporting the link between
tumor load and macrophages, the two patients who had almost the
same plasma cell infiltration in the paired samples (P11 and P18 in
Supplementary Fig. 8b) showed no depletion of monocytes/
macrophages.

Similar tomacrophages,weobserved adepletion forCD4-positive
T-cells (mean focal lesions = 7.28% (range:1.89–12.90%) vs. mean

RBM=9.95% (3.71-26.94%), p =0.16 in two-sidedWilcoxon signed rank
test). In contrast, for CD8-positive T-cells there was a trend towards
higher proportions in the focal lesions (mean focal lesion=20.23%
(5.01-73.91%) vs. mean RBM=9.42% (4.97–18.29%), p = 0.06 in two-
sided Wilcoxon signed rank test, Supplementary Fig. 8c, d).

Taken together, using scRNA-seq we observed a significant rela-
tive depletion of macrophages in the TME of focal lesions. Validation
experiments using IHC and flow cytometry suggest that the depletion
is strongly associated with the level of plasma cell infiltration rather
than being a unique feature of focal lesions.

The T-cell repertoire displays spatial differences with regard to
clonal proportions
T-cells are themaincontributor to the adaptive anti-tumor responseby
recognizing tumor neoantigens through their T-cell receptor (TCR)26.
To address the questions if the T-cell repertoire is heterogeneous
between BM sites and if there are site-unique T-cell clones in MM
patients, we combined scRNA-seq of the TME with TCR-sequencing
(TCR-seq) (Fig. 7). Since the BM regularly contains T-cells, and clonal
expansion of T-cells has been linked to tumor reactivity26,27, we focused
on expanded (proportion ≥1%) and hyperexpanded (proportion ≥5%)
T-cell clones. TCRs could be assigned to 11467 of 13702 (84%) T-cells
from 6 patients. We found expanded T-cell clones in all patients
(median: 10 clones, range: 2–16). At least one hyperexpanded clone
was found in 3 patients (range: 1–3) (Fig. 7a, Supplementary Data 6).
Expanded T-cell clones almost exclusively resided in the CD8-positive
compartment, with 75% (range 0–89%) and 16% (range 0–51%) of them
being CD8 Memory 2 cells (CD45RO+/CD57+) and CD8 Effector 2 cells
(CD69+), respectively (Fig. 7b, Supplementary Data 7). In line with this
observation, we found a strong positive correlation between the
number of expanded T-cell clones and the proportion of CD8-positive
T-cells for both focal lesion (Pearson correlation 0.90, p =0.01) and
RBM (Pearson correlation 0.97, p =0.001) (Supplementary Fig. 8e).
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Using Wilcoxon signed rank tests, we did not observe significant dif-
ferences in exhaustion and cytotoxicity scores28 between expanded
and non-expandedT-cell clones inour set (Supplementary Fig. 8f), and
the same holds true for expanded T-cell clones in focal lesions vs.
RBMs (Supplementary Fig. 8g).

For the comparison of T-cell repertoire between paired samples,
we only included T-cell clones with at least 10 cells at one BM site to
avoid an overestimation of heterogeneity. Using this stringent criter-
ion, none of the expanded T-cell clones were site-unique and expan-
sion was typically seen in both paired samples. Using a threefold
difference as an arbitrary cut-off, at least one expanded clone (range:
1–9) showed variation in focal lesion/RBM pairs (Fig. 7c). Yet, changes
in T-cell clone proportions were also seen in paired samples from
patient P03 with hardly any differences in genomic profiles between
focal lesion and RBM (Fig. 7c). We conclude that proportional changes
in the T-cell repertoire are not necessarily linked to genetic

heterogeneity. In line, searching curated databases of TCR
sequences29,30, CDR3 sequences from a total of 10 expanded T-cell
clones in our set were associated with recognition of epitopes derived
from viruses (CMV, EBV or Influenza A), including 6 T-cell clones with
>3-fold spatial differences (Fig. 7c).

In summary, we observed proportional changes in the T-cell
repertoire in paired samples. Yet, in our set none of the expanded
T-cell clones was site-unique and there were no consistent spatial dif-
ferences in exhaustion or cytotoxicity scores.

Discussion
MM is a heterogeneous disease, in which focal lesions are associated
with poor outcome11,12. To define the subclonal architecture and
expression signatures as well as the composition of the TME in focal
lesions in detail, we applied a comprehensive approach including bulk
WGS, RNA-seq as well as the two sc-sequencing techniques, scRNA-seq
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and scATAC-seq. Using this advanced approach, we describe expres-
sion differences between unique subclones and show that genetically
identical subclones can display different levels of spatial transcrip-
tional plasticity, including nearly identical profiles and pronounced
heterogeneity at different bone marrow sites. We demonstrate a
depletion of macrophages at sites with a high plasma cell infiltration
and proportional changes in the T-cell repertoire in intramedullary
focal lesions.

In our prospective study, we observed spatial heterogeneity at a
similar extent as seen in a recent whole-exome sequencing study,
including site-unique tumor subclones5. At first glance, presence of
site-unique or strongly enriched tumor subclones is in contrast to
another multi-region scRNA-seq analysis in MM which provided only
limited evidence for spatial genomic heterogeneity innewly diagnosed
patients31. Merz and co-workers primarily used samples from small
osteolytic lesions to explore the mechanism underlying bone disease.
Yet, Rasche et al. recently demonstrated that spatial heterogeneity was
associated with the size of focal lesions5,11, and consequently we
focused on focal lesionswith a diameter >1 cm,which could rationalize
the observed differences.

Rasche and co-workers proposed that the evolutionary selective
pressure in the BM niche could lead to the selection of MM subclones
with decreased BM dependence5. Our findings on the depletion of
macrophages in the TME provide evidence for this hypothesis. Mac-
rophages support cancer hallmarks in MM, such as angiogenesis32 and
prevent MM cell death through IL-6/STAT3 signaling and BAFF/BCMA-
interactions25,33. Hence, the depletion of macrophages in focal lesions
suggest that MM cells at these sites are less dependent on one of the
key plasma cell interaction partners in the BM. Of note, the number of
macrophages has been shown to be associated with more aggressive
disease, worse prognosis and treatment resistance in MM34,35. Thus,
our findings have potential implications for models of MM disease
progression. Furthermore, theymight also impact the development of
macrophage targeting therapies in MM and the response of focal
lesions to immunotherapy which requires antibody dependent
phagocytosis36.

We appreciate that further research is required to conclude if
the depletion of macrophages is the cause or the result of the
expansion of advanced subclones in focal lesions and if they have
any impact on therapy response and tumor cell expression pro-
files. The same holds true for changes in tumor cell expression
profiles, including downregulation of genes coding for chemo-
kines such as CXCL12. We could not validate this finding at the
protein level but our preliminary findings on changes in myeloma
cells and the TME provide potential explanations for this dis-
crepancy. De Jong et al. recently demonstrated the important role
of CXCL12-producing inflammatory mesenchymal stromal cells in
the pathogenesis of MM19. Here, we show a significant increase in
the proportion of mesenchymal stromal cells in the TME of focal
lesions and upregulation of the CXCL12-scavenger receptor
CXCR7 in the patient with the strongest down-regulation of
CXCL12 at the mRNA level, indicating increased supply with
CXCL12 and/or uptake of the chemokine by tumor cells in focal
lesions. We appreciate that this finding needs to be confirmed in
larger studies.

While we identified changes in expression profiles between focal
lesions and paired RBM, with our limited sample set we could not
address the question if there are transcriptional signatures which dis-
criminate between site-unique and disseminated tumor subclones to
gain deeper insights into “myeloma metastasis” and/or focal lesion
formation. Thus, we propose a spatial-longitudinal study, starting at
premalignant stages of the disease, with samples from different intra-
and extramedullary sites to better understand the complex evolu-
tionary processes that result in BM independence andmore aggressive

disease. However, we need to emphasize that lesions are often not
accessible or only with a risk to the patient that is not acceptable for a
purely diagnostic study.

A spatial-longitudinal study would also improve our under-
standing why focal lesion subclones, which are characterized by
unique mutations, can expand in the BM, without triggering an
efficient immune response. Yet, our preliminary findings on the T
cell repertoire at different BM sites already provide some clues.
Expansion of T-cell clones has been described as amarker for tumor
specificity in melanoma26,27. While we observed quantitative differ-
ences in the T-cell repertoire, we did not detect site-unique
expanded T-cell clones in our set of intramedullary focal lesions,
which is in contrast to metastasis infiltrating T-cells in melanoma21.
Thus, increased immune dysfunction could be one potential
mechanism underlying the ability to expand. While even non-
expanded T-cell clones can be tumor specific27, we provide further
evidence for escape of immune surveillance, including differential
expression of MHC-I and MHC-II components between subclones
and/or BM sites. Yet, we appreciate that the failure to show a link
between tumor genomics and expanded T-cell clones could be due
to the limited sample size of our study.

Strikingly, we also observed location and subclone-specific epi-
genetic and transcriptional plasticity for genes coding for key immu-
notherapy targets such as BCMA and CD38. This suggests that at least
in some patients subclones and focal lesions couldpotentially respond
differently to immunotherapy37,38. We recently provided clinical evi-
dence for this assumption: using functional imaging for response
assessment in a patient treated with the monoclonal anti-CD38 anti-
body daratumumab, we observed both responding and progressing
focal lesions39. However, we cannot exclude that expression differ-
ences were caused by subclonal differences in stress responses
induced by sample processing. We also appreciate that this finding
needs to be validated on the protein level, which was not possible in
our study due to limited biomaterial.

In conclusion, our study reveals more insights into spatial het-
erogeneity in myeloma, including the subclonal structure in focal
lesions and the processes underlying increasing independence of MM
cells from the BM microenvironment. Further research is justified to
resolve the next stage of focal lesion evolution in MM, such as para-
and extramedullary disease, and the role of focal lesions in a relapsed
setting, which is likely to provide even deeper insights into the
pathogenesis of MM.

Methods
Patients
This study was approved by the Heidelberg University Medical Faculty
ethics review board (S278-13) and complied with all relevant ethical
regulations. Signedwritten informed consent for sample procurement
and processing in accordance with the Declaration of Helsinki was
obtained for all cases included in this study. Study subjects did not
receive compensation for participation in the study. For the compar-
ison of paired samples, we included 31 Caucasians with newly diag-
nosedmyeloma and accessible focal lesions. Sexwas not considered in
the initial study design due to the small number of eligible patients. All
patients fulfilled the International Myeloma Working Group (IMWG)
criteria for treatment40. CD138-enriched MM cells for molecular ana-
lyses were available from 17 of these patients. Patient clinical char-
acteristics, the origin of samples and the analyses, which were
performed with the respective samples, are shown in Fig. 1b and
Supplementary Tables 3, 4. For correlation analyses between gene
expression and patient characteristics aswell as outcome, we included
653 newly diagnosed patients from two phase III clinical studies
(GMMG HD4 and MM5 trials) with available gene expression profiling
data41.
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Medical imaging
Whole-body 18F-Fluorodeoxyglucose (FDG)–positron emission tomo-
graphy (PET) computer tomography (CT) was performed with a Bio-
graph mCT, S128 (Siemens Co., Erlangen, Germany) 1 h after injection
of 18F-FDG. For attenuation correction of PET data and image fusion, a
low-dose attenuationCT (120 kV, 30mA)was used. An imagematrix of
400× 400 pixels was used for iterative image reconstruction, which
was based on the ordered subset expectation maximization (OSEM)
algorithm with two iterations and 21 subsets as well as time of flight
(TOF). The reconstructed images were converted to SUV images based
on the formula: SUV = tissue concentration (Bq/g)/(injected dose (Bq)/
body weight (g)).

Magnetic resonance imaging (MRI) was performed with a 1.5
Tesla MRI Scanner (Siemens Co., Erlangen, Germany). Imaging
sequences comprised coronal T1-weighted turbo spin echo (T1w;
repetition time 528ms, echo time 8.4ms, in plane resolution
1.3 mm × 1.3mm, slice thickness 5.0mm, 10% distance factor), cor-
onal T2 weighted short-TI inversion recovery (T2w; repetition time
3650, echo time 56ms, in plane resolution 0.7 mm×0.7mm (inter-
polated), slice thickness 5.0mm, 10% distance factor, fat suppres-
sion: slice-selective inversion recovery (TI = 160ms)), and axial
diffusion weighted imaging (DWI; Diffusion-EPI iShim, repetition
time 5130, echo time 64ms, in plane resolution 1.8mm×1.8mm
(interpolated), slice thickness 6.0mm, 0% distance factor, b values:
50 smm−2 and 800 smm−2, fat suppression: slice-selective inversion
recovery (TI = 180ms)).

For PET, a focal lesion was defined as a circumscribed focus with
increased FDG uptake compared with its surroundings. For MRI, focal
lesions were defined as focal hypointensity in T1 and as hyperintensity
in T2 and the high b-value image from DWI. The median diameter of
the analysed focal lesions was 2.6 cm (range: 1.4–7.8 cm). Guided
sampling was performed using a Siemens Emotion 16 CT (Siemens Co.,
Erlangen, Germany) or by surgical resections. The number and size of
osteolytic lesions is given in Supplementary Data 8.

Sample preparation
Focal lesions for CT-guided biopsies were chosen according to
accessibility and minimal risk for the patient. In case of multiple
eligible lesions, the best accessible lesion was selected. CT-guided
biopsies were performed in a separate session within one week after
collection of the sample from the iliac crest. Biopsies were per-
formed prior to treatment. For each site 10–15 ml of BM were col-
lected and processed on the same day. Mononuclear cells (MC)
from randomBM and intramedullary focal lesion aspirates as well as
from peripheral blood (PB) were isolated using the Ficoll–Paque
method. Subsequently, BM MM cells were enriched using an
immuno-magnetic CD138-positive selection (Robosep, Stemcell
Technologies). The CD138-positive and the CD138-negative BMMC
fraction were either stored in Qiagen RLT buffer (bulk sequencing)
at −80 °C or viably frozen in dimethylsulfoxide at a final con-
centration of 10% (sc sequencing) at −150 °C. PBMCs were stored as
dry pellets at −20 °C. For patient P09, we isolated DNA for whole-
genome sequencing from a fresh frozen specimen. Samples from
surgical resections of paramedullary lesions were minced and
enzymatically digested for 15min at 37 °C in MEM alpha Medium
(Gibco, USA) containing 1mg/ml Collagenase II, 0.8mg/ml Dispase
(both Gibco, USA) and 0.1 mg/ml DNAse I (SigmaAldrich, USA). Cells
were released by pipetting repetitively (30x). The reaction was
stopped using a quenching buffer (Calcium-free PBS + 5mM
EDTA + 2% FCS). For sequencing, MM cells were sorted (CD38 high,
CD45RA-) using a FACSAria (BD Biosciences). Dead cells were
identified and excluded using eFluor-506 (ThermoFisherScientific,
USA). Sorted cells were stored in RLT buffer (Qiagen, Hilden, Ger-
many) before bulk sequencing. The type of processing is shown for
each sample in Supplementary Table 5.

Flow cytometry
Cryopreserved samples were thawn at 37 °C and washed twice in ice-
cold 1x PBS. Used antibodies are shown in Supplementary Table 6.
Measurements were performed on a FACSymphony (BD Biosciences).
Dead cells were excluded using eFluor-506 (ThermoFisherScientific,
USA). The gating strategy for the identification of plasma cells (CD38+,
CD138+), monocytes/macrophages (CD11b+, CD33+), MSCs (CD90+,
CD271+), CD8 + T-cells (CD3+, TCRab+, CD8+) andCD4+ Tcells (CD3+,
TCRab+, CD8−) is shown in Supplementary Fig. 9. Only samples with
more than 10,000 cells were included.

Whole genome sequencing and variant calling
DNA of CD138-positive fractions fromRBM and focal lesion samples as
well as the corresponding PB (germline control) was isolated using the
Allprep Kit (Qiagen). WGS libraries were prepared with the Illumina
TruSeqNanoDNAkit and sequenced on aHiSeqX (paired-end 150bp),
average coverage 85x for tumor and 43x for germline control samples.
Raw sequencing data was processed and aligned to human reference
genome build 37 version hs37d5 using the DKFZ OTP WGS pipeline42.
Copy number aberrations (CNAs)were identified using ACEseq (v1.2.8-
4)43, and single nucleotide variants (SNVs) using samtools mpileup
(v1.2.166-3)44. For the SNVs additional filtering steps were applied,
including blacklist filtering45, fpfilter (https://github.com/genome/
fpfilter-tool) and removal of SNVs located in regions coding for
immunoglobulins. For SNVs, which were only called in one of the
paired samples, Rsamtools (v2.6.0) was used to determine the number
of reference and variant reads in both samples.Manual somatic variant
refinement using IGV (v2.7.2)46 was performed according to a pub-
lished standard operating procedure47. The cancer clonal fraction
(CCF) was calculated using the following equation48:

nmut = f s ×
1
p

pnt
locus +2 1� pð Þ� � ð1Þ

where nmut is the mutation copy number, f s is the fraction of mutated
reads (variant allele frequency), p is the tumor purity, and nt

locus is the
locus-specific copy number. Tumor purity p was estimated based on
histograms for the variant allele frequency (VAF) of SNVs (purity values
are shown in Supplementary Table 5). For nt

locus we used the values
predicted by ACEseq. We then compared the expected f s value to
values assuming the mutation was on 1,2,3, …, C chromosomes and
assigned nchr the value of C with the maximum likelihood using a
binomial distribution. Finally, theCCFwasdeterminedbydividingnmut

by nchr . To avoid an overestimation of heterogeneity at themutational
level, only SNVs with a CCF >0.15 in at least one of the paired samples
were considered for downstream analyses. Aberrations with the same
or similar CCF in paired samples were called shared5. Aberrations,
which were detectable in only one of the paired samples, were called
unshared. Furthermore, we discriminated between minor and major
events: We calculated 95% confidence intervals (95% CI) for CCFs and
classified mutations as major, if the upper band of the 95% CI was ≥ 1,
and minor otherwise49. Furthermore, major mutations with a 3-fold
enrichment between the paired samples were classified as enriched.
Only nonsynonymous SNVs with a CADD score50 > 20were considered
for driver gene6 analyses. For CNAs, we used a CCF cut-off of 0.6 to
discriminate between minor and major events.

Gene-expression profiling (GEP)
GEP of CD138-enriched BM plasma cells was performed using Affy-
metrix U133Plus2.0 microarrays (Santa Clara, CA) according to the
manufacturer’s instructions. As chip definition file (CDF) we used the
Affymetrix U133 Version 2.0 plus array custom (CDF) mapping to
Entrez genes (http://brainarray.mhri.med.umich.edu/Brainarray/
Database/CustomCDF/). Expression data were normalized using GC-
RMA and converted to log2 scale.
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Bulk RNA-sequencing
RNA-Seq libraries were prepared using the Illumina TruSeq stranded
mRNA kit and sequenced on the Illumina NovaSeq 6000 PE 100 S1
platform. Paired-end reads weremapped to the STAR index generated
reference genome (build 37, hs37d5) using STAR v2.5.2b51. Gene
expressions were quantified using featureCounts (Subread v1.5.1).
Differential gene expression analysis was performed with the
R-package DESeq2 (v1.28.1)16 using tumor purity as covariate. Reg-
ularized logarithm (rlog) function was used for transformation to
log2 scale and normalization including library size. Differentially
expressed genes were visualized using the R-package EnhancedVol-
cano (https://github.com/kevinblighe/EnhancedVolcano, v1.6.0).

Single-cell RNA-sequencing including VDJ-sequencing
Cryopreserved samples were thawed at 37 °C and washed twice in ice-
cold 1x PBS. For CD138+ and CD138- BMMCs single-cell RNA plus B and
T-cell receptor sequencing were performed using the Chromium Next
GEM Single Cell 5’ Reagent Kit v1.1 and the V(D)J Reagent Kit v1.1
according to the manufacturer’s protocol (14,000 cells per channel).
Generated gene expression libraries were paired-end sequenced on
the NovaSeq 6000 S2. Generated V(D)J libraries were paired-end
sequenced on the NextSeq 550.

Single-cell ATAC-sequencing
Viably frozen CD138+ BMMCs were thawed and washed once with 1x
PBS. Cell pellets were carefully resuspended in an ice-cold NP-40 lysis
buffer (10mMTris-HCl, pH 7.4, 10mMNaCl, 3mMMgCl2, 0.1% IGEPAL
CA-630) and spun down immediately. Nuclei were resuspended in the
10X Genomics nuclei buffer, counted and subjected to Tn5 tagmen-
tation. The subsequent steps were done according to the manu-
facturer’s instructions for the 10X Genomics Single Cell ATAC v1.0 or
v1.1 Kit. Generated scATAC-seq librarieswere paired-end sequencedon
a NovaSeq 6000 S2.

Preprocessing and analysis of single-cell RNA-sequen-
cing data
For each demultiplexed library CellRanger count (v5.0.0) was run with
reference refdata-gex-GRCh38-2020-A to quantify single cell feature
counts. Cellranger vdj (v5.0.0) was used for each single TCR and BCR
library (with reference refdata-cellranger-vdj-GRCh38-alts-ensembl-
5.0.0). The count matrices were loaded into R (v4.0.2) by using the
standard Seurat (v4.0.1) parameters and annotated for patient, loca-
tion, sorting fraction and then merged. Cells with more than 5%
mitochondrial RNA, less than 200 ormore than 5000 expressed genes
were removed (Supplementary Fig. 3a, Supplementary Table 7). Cell
doublets were removed using Scrublet52 (prediction score >0.3).
Immunoglobulin genes were removed. Normalization was done using
SCtransform53 and technical or biological confounding effects as
mitochondrial counts or cell cycle stages were regressed out using the
“vars.to.regress” argument. Harmony (v1.0)54 was used for integration
of samples. Sampleswere clustered together basedonSeurat k-nearest
neighbors clustering with a resolution of 0.5. Cells were embedded
into a two-dimensional space using Uniform Manifold Approximation
and Projection (UMAP)55 (Supplementary Fig. 3b). Next, the dataset
was split into a tumor and a TME dataset (Supplementary Fig. 3c, d).
The cell type assignment of the TME was done based on a Cite-seq BM
reference dataset56 by using the multimodal reference mapping
approach from Stuart et al.22. In brief, the cell type assignment of each
sample works as follows: anchors were defined between the reference
and each query sample and then each sample was individuallymapped
to the reference. In a next step, all annotated samples were merged as
they have been integrated into a common reference space and then
visualized. The tumor cells within the CD138-negative fraction,
respectively the TME cells from the CD138-positive fraction were
removed from downstream analysis. The separate tumor and TME

datasets were then again normalized with SCtransform53. Cell-cycle
scores were calculated with the Seurat function “CellCycleScoring”.

Differential expression analysis was performed with the standard
Seurat function Find(All)Markers (parameters: min.pct = 0.25, logfc.-
threshold = 0 for subclone comparison between focal lesions and
RBM, respectively logfc.threshold = 0.25 for the general subclone
comparisons). Pearson correlations between subclones were calcu-
lated based on the genes, which were also used for the differential
expression analysis (min.pct = 0.25, logfc.threshold = 0). For gene set
enrichment analysis the hypeR R-package (v1.6.0)57 was used with the
MSigDB HALLMARK geneset58.

Gene expression signatures were calculated with the Seurat
functionAddModule Score (https://satijalab.org/seurat/index.html) by
using recently published signatures to determine the level of exhaus-
tion (TIGIT, HAVCR2, CTLA4, PDCD1, LAG3, LAYN) and cytotoxicity
(NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG, CCL3) of T-cells28.

VDJ filtered_contig_annotations files were loaded into R, com-
bined from all patients (separately for TCR and BCR) and mapped to
the Seurat object by using the scRepertoire package (v0.99.15)59.
Clonal T-cells, which made up ≥1% of the total T-cell population and
showed at least 5 cells in one of the paired samples, were called
expanded. Clonal T-cells ≥5% of all T-cells were called hyper-
expanded. T-cells with only one successfully sequenced chain were
merged with the corresponding clonal T-cells with complete chain
information. To test for antigen specificity, the CDR3 sequences of
the expanded TCRs were looked up in the curated databases VDJdb29

and McPas-TCR30.
To call mutations in scRNA-seq data, SNV positions from theWGS

data (hg19) were transformed to hg38 using rtracklayer (v1.50.0)60 and
mutation calling in the scRNA-seq data was performed using Vartrix
with default parameters (https://github.com/10XGenomics/vartrix).
This mutation information was then mapped to the Seurat tumor
objects.

Preprocessing and analysis of single-cell ATAC-sequencing data
Raw scATAC-seq reads were aligned to the reference genome GRCh38
using CellRanger ATAC (10X Genomics, version 1.2). For downstream
analysis, the fragment files of all samples (4x paired focal lesion and
random bone marrow specimens) were loaded into the ArchR frame-
work (v1.0.2)61 with default parameters including doublet detection. In
addition, basedon thequality control plots all cells with a transcription
start site (TSS) enrichment score <8, <3000 fragments, a doublet
enrichment score >6 and a predicted doublet score >200were filtered
out (Supplementary Fig. 3e–g, Supplementary Table 8). This resulted
in 7741 cells with a median TSS of 13.726 and median fragment size of
18,239. First, all cells from the different patients together were nor-
malized using iterative latent semantic indexing (LSI)62,63 and clustered
with a resolution of 0.5 (Supplementary Fig. 3h). Gene activity impu-
tation was performed using MAGIC64 and peak calling with MACS2
(extendSummits = 750)65. Plasma/myeloma cells could be dis-
tinguished fromother immune cells basedon thegene activity scoreof
CD138/SDC1. One cluster containing plasma cells from different
patients was defined as a normal plasma-cell reference for CNA-calling
analogous to scRNA-seq (Supplementary Fig. 3h).

Motif deviations were calculated based on the JASPAR database66.
For pseudobulk TF motif analysis, the MotifMatrix was extracted from
the ArchR-project using the “getMatrixFromProject” function. For
each TF motif, a mean value was calculated over all cells from the
corresponding sample. The most highly variable TFs were visualized
using pheatmap in R. Co-accessibility between genomic regions was
separately calculated for timepoints and CNA subclones, respectively,
adjusting the ArchR framework to single-cell resolution without
aggregation of cells. The degree of co-accessibility in the background
was determined by randomly shuffling the accessibility values over
cells and peaks as described previously67. The 99th percentile of the
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maximum shuffled background co-accessibility score was used as a
threshold to determine true co-accessible links. Co-accessible links
were further evaluated by percent of accessible cells in the linked peak
pairs68.

Identification of subclones in single-cell sequencing data
For scRNA-seq, subclones were identified based on the presence of
subclonal CNAs. CNAs were predicted using the R-package InferCNV
(v1.6.0)13. The prediction is based on expression averages of adjacent
genes over large genomic regions. As reference we used normal
plasma cells from patients in our dataset, which clustered together
(Supplementary Fig. 3d). As input for InferCNV we used normalized
counts of the patients together with a gene ordering file built based
on the 10X Genomics reference file for running CellRanger. Impor-
tantly, we only included regions with subclonal CNAs according to
WGS. The cells were hierarchically clustered (methodward.D2) based
on the InferCNV output and the clustered dendrogram was cut
according to visually identified subclones using the R-package den-
dextend (v1.15.2)69. For scATAC-seq, CNAs were called using a script
published by Lareau et al.14 (https://github.com/caleblareau/
mtscATACpaper_reproducibility/tree/master/cnv_compute). Briefly,
overlapping 10Mb genome-wide bins were constructed from the
fragments file. For all cells passingQC criteria a bin by cell matrix was
computed separately for the malignant and the normal plasma cells
from all patients (Supplementary Fig. 3h), and a z-score matrix was
calculated using the normal plasma cells as reference. Next, similar to
the scRNA-seq approach, we performed hierarchical clustering of
regions with subclonal CNAs according to WGS. Heatmaps of clus-
tered z-scores for chromosomes from single cells were visually
inspected and compared to scRNA-seq heatmaps and WGS chro-
mosomal profiles to identify congruities and conflicting results. The
location of chromosomal regions, which were used for clustering,
and the number of consecutive rounds, in case an iterative process
was required, are shown in Supplementary Table 9. The recently
published script70 for the WGS-guided subclone identification in
scRNA-seq and scATAC-seq data is available at: https://github.com/a-
poos/MM_subclones.

Immunohistochemistry
Representative tissue blocks containing MUM1-positive myeloma cells
were selected. The blocks were sectioned with a standard microtome
at 2 µm thickness. Subsequently, the slides were dried overnight at
room temperature. Immunohistochemical staining for MUM1, CD68,
CD4, CD8, CD138, Ki67, CXCL12, CXCL7 and CXCR4 was performed
using the automated immunostainer Ventana Benchmark Ultra
(Roche, USA). Used antibodies are shown in Supplementary Table 6.
For image acquisition of stained slides the Aperio AT2 slide scanner at
40x magnification and the manufacturer’s acquisition software suite
were used (Leica Biosystems, Nussloch, Germany).

Images were analyzed using the QuPath software (v0.3.2).
Therefore, the images were imported using the Bioformats builder.
Detection of all cells and the positive stained cells within the specimen
was done using the integrated “positive cell detection” module of
QuPath with “Hematoxylin” as the reference channel. The module
estimates the full extent of each cell based upon a constrained
expansion of the nucleus region and calculates up to66measurements
of intensity and morphology. For the quantification of CD4-, CD8- or
CD68-positive cells, the threshold for positive detection was calcu-
lated for each image analyzing at least 30 CD4, CD8 and CD68 cells for
their DAB staining signal and the mean value was then formed and
used. To correlate the proportion of these cells with the tumor load
within a slide, the level of plasma cell infiltration was visually scored in
each slide by an expert pathologist from 1 to 4, representing 5–25%,
26–50%, 51–75% and 76–100% infiltration, respectively. For the

quantification of CXCL12 a three-tiered threshold was used, which was
calculated by analyzing at least 30 CXCL12 positive plasma cells, which
were identified based on their morphology, of 10 randomly selected
whole slide images for their DAB staining signal. The values were set to
0.2 (1+), 0.4 (2+) and 0.8 (3+).

To determine the Ki-67 index of myeloma cells, slides co-stained
for CD138 (DAB) and Ki-67 (FastRed) were analyzed. First, a “single
measurement classifier” for detecting CD138-positive cells was cre-
ated. For classification the following settings were used: object filter:
“cells”, channel filter: “DAB”, measurement: “cell:DAB mean”. The
threshold for positive detection was calculated for each image ana-
lyzing at least 30 myeloma cells for their CD138 bright field signal and
the mean value was then formed. Cells above the threshold were
classified as “myeloma cells” and cells below the threshold were clas-
sified as “hematopoiesis”. Next, theKI-67 indexwas analyzedwithin the
myeloma cells using the internal “cell intensity classification” module
of QuPath. The threshold was calculated as described for the CD138
immunostaining. A final check of all stained and detected cells was
performed by an expert pathologist.

Enzyme-linked immunosorbent assay
For ELISA, either paired dry pellets or viably frozen cells were used.
Viably frozen CD138+ BMMCs were thawed and washed twice with 1x
PBS. Cells were lysed using ice-cold lysis buffer ABIN0-007-3 (anti-
bodies-onlineGmbH,Aachen, Germany). After 30min on ice, the tubes
were subjected to ultrasonication for 3x 15 s. Protein concentrations
were determined using the Bicinchoninic acid reaction (Pierce™ BCA
Protein Assay Kit, ThermoFisherScientific, Waltham, Massachusetts,
USA) according to themanufacturer’s instructions. CXCL7 andCXCL12
werequantifiedusing the Pro-Platelet Basic Protein (Chemokine (C-X-C
Motif) Ligand 7) (PPBP) and Chemokine (C-X-C Motif) Ligand 12
(CXCL12) ELISA kits offered by antibodies-online, respectively. Due to
limited material, we used between 750-1500ng total protein per
reaction, with matched protein loads for paired samples. Quantifica-
tions were performed twice in duplicates.

ChIP-seq data
Publicly available IRF4 ChIP-seq data20 for MM cell line KMS12BM
were downloaded from the European Nucleotide Archive (accession
number: PRJEB25605; https://www.ncbi.nlm.nih.gov/bioproject/
PRJEB25605/) and peaks were called using the nfcore/chipseq
pipeline71 (v.1.0.0) with default settings (narrowPeaks).

Statistical methods
Statistical analyses were carried out using the R software package
v4.0.2. Group comparisons of continuous variables were done using
the two-sided Wilcoxon rank sum test for unpaired samples and the
two-sided Wilcoxon signed rank test for paired samples. Correlation
coefficients were determined using Pearson correlation. The Kaplan-
Meiermethod was used for survival analyses. Overall survival was time
from enrollment to death of any cause. Cox proportional hazards
regression was used to estimate hazard ratios and 95% confidence
intervals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
WGS,RNA, scRNA, scATAC, TCRandBCRsequencingdata of this study
have been deposited at the European Genome-phenome Archive with
the study identifier EGAS00001006090 and are available on request
from the associated Data Access Committee (hipo_daco@dkfz-hei-
delberg.de) due to them containing patient information under
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controlled access. Access will be granted to commercial and non-
commercial parties according to patient consent forms and data
transfer agreements. We have an institutional process in place to deal
with requests for data transfer and aim for a rapid response time. The
duration of data access after approval is limited to 36 months.

The publicly available gene expression profiling datasets used in
this study are available at ArrayExpress under accession code E-MTAB-
2299 and Gene Expression Omnibus under accession code
GSE19784 72. The publicly available whole exome sequencing data used
in this study are available from the European Genome-phenome
Archive under accession code EGAS00001002111 5. IRF4 ChIP-seq data
of the MM cell line KMS12BM used in this study are publicly available
from the European Nucleotide Archive with the accession number
PRJEB25605 20. The remaining data are available within the Article,
Supplementary Information or Source Data file. Source data are pro-
vided with this paper.
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